A comparison of functional and tractography based networks in cerebral small vessel disease

نویسندگان

  • Andrew J. Lawrence
  • Daniel J. Tozer
  • Emmanuel A. Stamatakis
  • Hugh S. Markus
چکیده

Objective MRI measures of network integrity may be useful disease markers in cerebral small vessel disease (SVD). We compared the sensitivity and reproducibility of MRI derived structural and functional network measures in healthy controls and SVD subjects. Methods Diffusion tractography and resting state fMRI were used to create connectivity matrices from 26 subjects with symptomatic MRI confirmed lacunar stroke and 19 controls. Matrices were constructed at multiple scales based on a multi-resolution cortical atlas and at multiple thresholds for the matrix density. Network parameters were calculated over the multiple resolutions and thresholds. In addition the reproducibility of structural and functional network parameters was determined in a subset of the subjects (15 SVD, 10 controls) who were scanned twice. Results Structural networks showed a highly significant loss of network integrity in SVD cases compared to controls, for all network measures. In contrast functional networks showed no difference between SVD and controls. Structural network measures were highly reproducible in both cases and controls, with ICC values consistently over 0.8. In contrast functional network measures showed much poorer reproducibility with ICC values in the range 0.4-0.6 overall, and even lower in SVD cases. Conclusions Structural networks identify impaired network integrity, and are highly reproducible, in SVD, supporting their use as markers of SVD disease severity. In contrast, functional networks showed low reproducibility, particularly in SVD cases, and were unable to detect differences between SVD cases and controls with this sample size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy

Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

THE USAGE OF ARTIFICIAL NEURAL NETWORKS IN HYDRODYNAMIC ANALYSIS OF FLOATING OFFSHORE PLATFORMS

Floating offshore structures, particularly floating oil production, storage and offloading systems (FPSOs) are still in great demand, both in small and large reservoirs, for deployment in deep water. The prediction of such vessels’ responses to her environmental loading over her lifetime is now often undertaken using response-based design methodology, although the approach is still in its...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018